Question one

Problem: Longest Path Length
Input: A weighted graph \(G = (V, E, W) \) and two nodes \(u \) and \(v \).
Output: The length of the longest simple path between \(u \) and \(v \).

a) Transform this problem into a decision problem.

Problem: Longest Path Decision
Input: A weighted graph \(G = (V, E, W) \), two nodes \(u \) and \(v \), and a bound \(k \).
Output: True if the graph \(G \) has a simple path between \(u \) and \(v \) of length \(k \) or greater, false otherwise.

\[\text{L-PATH} = \{ <G, u, v, k> | \text{Graph } G \text{ has a simple path between } u \text{ and } v \text{ of length } k \text{ or greater} \} \]

b) Prove that Longest Path Decision (L-PATH) and Longest Path Length are reducible to each other.

// Solve decision with general
L-PATH(G, u, v, k)
 if Longest-Path-Length(G, u, v) >= k
 return true
 return false

The if statement is constant time and so are the return statements, so the reduction is constant time and therefore polynomial time (\(\Theta(n^0) \)).

// Solve general with decision
Longest-Path-Length(G, u, v)
 for k = G.numVertices to 0 do
 if L-PATH(G, u, v, k) == true
 return k
 return "no path"

The for loop is order \(\Theta(v) \) where \(v = |G.V| \), which is polynomial time in relation to the input length. \(u \) and \(v \) are constant length, and \(G \)'s length is determined by both its edges and vertices. However there are at most \(v^2 \) edges and at least 0. With 0 edges, \(G \) is just a list of vertices, and the running time is \(\Theta(v) \). With \(v^2 \) edges the input is \(\Theta(v + v^2) = \Theta(v^2) \) and the running time is still \(\Theta(v) \), so this is clearly polynomial time with an exponent of \(\frac{1}{2} \).
Question two

Problem: Clique
Input: An undirected graph G and a value k.
Output: "Yes" if G has a complete subgraph of size ≥ k and "No" otherwise.

Prove Clique is in NP by following the steps below.

a) What is the certificate for the Clique problem?
A set of ≥ k vertices in graph G that are all connected.

b) What is the verification algorithm?

// Input: Undirected graph G, clique lower bound k, and answer subset a which // will be verified // Output: True if a is a clique of size >=k, false otherwise
Verify-Clique(G, k, a)
if a.size < k
 return false
for each vertex v1 in a
 for each vertex v2 in a
 if v1!=v2 and there is no edge v1-v2 in G
 return false
return true

The first if statement is constant time, as is the return statement. That leaves the double for loop, which both loop over n elements where n is the size of G. Inside the for loops are some more constant time statements.

Therefore the running time is c + n(n(c)), which is Θ(n^2). This is polynomial time since it is of the form n^m where m = 2 and is a constant.
c) *Show that Largest Clique is reducible to Decision Clique and vice versa.*

// Solve general with decision
//
// Input: Graph G
// Output: Largest clique in G
Largest-Clique(G)
 for k = G.numVertices to 0
 if Decision-Clique(G,k) == true
 return size

The for loop runs $\Theta(v)$ where $v = |G.V|$, which is polynomial time in relation to the input. See problem 1b relating $|v|$ to $|G|$.

// Solve decision with general
//
// Input: Graph G and bound k
// Output: True if a clique of size $\geq k$ exists in G, false otherwise
Decision-Clique(G,k)
 if Largest-Clique(G) \geq k
 return true
 return false

If and return statements are constant/polynomial time (see 1b).
Question three

Demonstrate the following by giving poly-time algorithms to solve C.

a) If A and B are in P, then the problem $C = \{x : x$ is an instance of both A and $B\}$ is also in P.

\[
C(x) \\
\text{if } (A(x)==true) \text{ and } (B(x)==true) \\
\text{return true} \\
\text{return false}
\]

If and return statements are constant/polynomial time (see 1b).

b) If A and B are in P, then the problem $C = \{x : x$ is an instance of either A or $B\}$ is also in P.

\[
C(x) \\
\text{if } (A(x)==true) \text{ or } (B(x)==true) \\
\text{return true} \\
\text{return false}
\]

If and return statements are constant/polynomial time (see 1b).

c) If A and B are in P, then the problem $C = \{z : where z = xy for some x and y where x is an instance of A and y is an instance of B\}$ is also in P.

\[
C(z) \\
\text{for } (i=0 \text{ to } z\text{.length}) \\
\text{if } A(z\text{.substring}(0,i))==true \text{ and } B(z\text{.substring}(i,z\text{.length}))==true \\
\text{return true} \\
\text{return false}
\]

The for loop is $\Theta(|z|)$, which is exactly the length of the input, so the running time is linear and therefore polynomial with exponent one.