Notes on my pseudocode: I’m using Java-like syntax where everything is an object, and I can add properties to any object without declaring them, e.g. if v is a vertex I can set v.mapped = true and that vertex object will carry that boolean with it. Everything is also case-sensitive. The syntax G.E(v1,v2) where G is a graph and E is its set of edges is true if the edge v1-v2 is in G.E, false otherwise.

Question one

Prove SUB-ISO is NP-complete.

```
// Input: Graphs G1 and G2, and function f which maps vertices
// in G1 to G2, or null if there is no mapping
// Output: True if f maps some or all vertices in G1 to a subgraph
// of G2 that is isomorphic to the corresponding G1 vertices.
// False otherwise.
Verify-SUB-ISO(G1, G2, f)
  for each v in G2.V
    v.used = false
  for each v in G1.V
    vmapped = f(v)
    if (vmapped is not in G2.V)
      return false
    if (vmapped.used == true)
      return false
    vmapped.used = true
    for each vadjacent in G1.V
      if (G1.E(v,vadjacent)==true)
        if (G2.E(f(v),f(vadjacent))!=true)
          return false
  return true
```

The first loop runs over \(v\) vertices. The second loop is a double loop, both going over \(v\) vertices totalling \(v^2\). Everything else in the double loop is constant time. Therefore the total running time is \(\Theta(v^2)\).
Reduction:

Clique(G, k)
 if (k > |G.V|)
 return false
 C = new graph with k vertices
 for each v in C
 for each av in C // adjacent vertices
 if (v != av)
 set vertex v adjacent to av in C
 if (SUB-ISO(C, G) == true)
 return true
 return false

The reduction constructs a new graph C that is a full Clique of size k. The SUB-ISO algorithm will search for a subgraph in G that is fully connected, which will be a clique. If such a subgraph exists, that is a clique of size k and both return true. If there is no clique in G, SUB-ISO will fail because no fully connected subgraph will exist in it.

The reduction creates a graph C in k time, and populates it with a double loop over k vertices totalling k^2. The inside is just a conditional and an assignment, both constant time operations. Therefore the total reduction time is $\Theta(k^2)$.
Question two

a) Execute GreedyColoring on $V=\{1,2,3,4,5\}$ and $E=\{(1,2),(2,3),(3,4),(4,5)\}$. Does the algorithm find the optimal coloring? If not, give it.

Step 1:

$v=1$

adjacent colors=none

action: color vertex 1 with color 1

coloring: \{1,-,-,-,-\}

Step 2:

$v=2$

adjacent colors=1 (vertex 1)

action: color vertex 2 with color 2

coloring: \{1,2,-,-,-\}

Step 3:

$v=3$

adjacent colors=2 (vertex 2)

action: color vertex 3 with color 1

coloring: \{1,2,1,-,-\}

Step 4:

$v=4$

adjacent colors=1 (vertex 3)

action: color vertex 4 with color 2

coloring: \{1,2,1,2,-\}

Step 5:

$v=5$

adjacent colors=2 (vertex 4)

action: color vertex 5 with color 1

coloring: \{1,2,1,2,1\}

Yes, \{1,2,1,2,1\} is the optimal coloring.
b) For \(V=\{1,2,3,4,5,6\} \) and \(E=\{(1,4),(1,6),(2,3),(2,5),(3,6),(4,5)\} \), how many colors are used by the GreedyColoring algorithm? How many for the optimal coloring?

Step 1:
\(v=1 \)
adjacent colors=none
action: color vertex 1 with color 1
coloring: \(\{1,-,-,-,-,-\} \)

Step 2:
\(v=2 \)
adjacent colors=none
action: color vertex 2 with color 1
coloring: \(\{1,1,-,-,-,-\} \)

Step 3:
\(v=3 \)
adjacent colors=1 (vertex 2)
action: color vertex 3 with color 2
coloring: \(\{1,1,2,-,-,-\} \)

Step 4:
\(v=4 \)
adjacent colors=1 (vertex 1)
action: color vertex 4 with color 2
coloring: \(\{1,1,2,2,-,-\} \)

Step 5:
\(v=5 \)
adjacent colors=1 (vertex 2) and 2 (vertex 4)
action: color vertex 5 with color 3
coloring: \(\{1,1,2,2,3,-\} \)

Step 6:
\(v=6 \)
adjacent colors=1 (vertex 1) and 2 (vertex 3)
action: color vertex 6 with color 3
coloring: \(\{1,1,2,2,3,3\} \)

The greedy algorithm uses three colors, but the optimal only needs two: \(\{1,2,1,2,1,2\} \).
c) What is the worst-case time complexity of GreedyColoring? Justify your answer.

The for each statement loops \(v \) times, and inside that loop potentially each vertex needs to be checked if it’s adjacent, which takes a total of \(c \cdot v^2 \). The first statement can be constant time and the second is \(c \cdot v \). So \(T(n) = O(v^2) \).
Question three

Explain in detail why the dynamic programming solution for SubsetSum is not in P.

The input consists of n weights and a capacity C. The weights are all equal to or less than C, and a reasonable encoding of the weights would be binary, which uses $\lg n$ bits. The input size is therefore $(\lg C)(n + 1)$ in the worst case, since C is also encoded using $\lg n$ bits.

The given running time is nC, which consists of two independent variables. n is linearly related to $(\lg C)(n + 1)$, since n itself appears in the expression. C is exponentially related, because $\lg C$ needs to be raised to the power of 2 to equal C ($2^{\lg C} = C$). The exponential relation forces the overall running time to be exponential, and therefore not polynomial.